题目
The value of the cumulative distribution function F(x), where x is a particular outcome, for a discrete uniform distribution:
选项
A.sums to 1.
B.lies between 0 and 1.
C.decreases as x increases.
答案
B
解析
B is correct. The value of the cumulative distribution function lies between 0 and 1 for any x: 0 ≤ F(x) ≤ 1. : B正确。 对于任意x: 0≤F(x)≤1,累积分布函数值在0和1之间。 补充: 本题考的是离散型均匀分布的累积概率值。概率分布函数F(x):给出取值小于某个值的概率,是概率的累加形式,即:F(xi)=P(x<=xi)=sum(P(x1),P(x2),……,P(xi))(对于离散型变量)掷骰子x的取值范围是123456这六个数字F(3)=P(x<=3)=sum(P(1),P(2),P(3)=1/6+ 1/6+ 1/6=1/2概率密度函数f(x):取特定一个值的概率f(xi)=f(3)=1/3所以有sum f(xi)=1在掷骰子的例子中,取到123456这6个数字的概率和为100%=1但是F(1)=P(x<=1)=1/6F(2)=P(x<=2)=1/6+ 1/6=1/3...F(6)=P(x<=6)=1/6+ 1/6 +1/6+ 1/6+ 1/6+ 1/6=1sum F(xi)不等于1